Monotone Additive Statistics

Xiaosheng Mu (Princeton) Luciano Pomatto (Caltech) Philipp Strack (Yale) Omer Tamuz (Caltech)
Talk Overview

- Definition of **monotone additive statistics**.
- Characterization.
- Applications.
 - Posted prices for sacks of potatoes.
 - Fishburn-Rubinstein time preferences.
 - Rabin-Weizsäcker preferences over gambles.
- Monotone additive costs of **Blackwell experiments**
 - Different paper: “From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again.”
 - Same authors.
 - Related ideas.
- Work in progress.
Talk Overview

- Definition of **monotone additive statistics**.
- Characterization.
- Applications.
 - Posted prices for sacks of potatoes.
 - Fishburn-Rubinstein time preferences.
 - Rabin-Weizsäcker preferences over gambles.
- Monotone additive costs of **Blackwell experiments**
 - Different paper: “From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again.”
 - Same authors.
 - Related ideas.
- Work in progress.
Talk Overview

- Definition of **monotone additive statistics**.
- Characterization.
- Applications.
 - Posted prices for sacks of potatoes.
 - Fishburn-Rubinstein time preferences.
 - Rabin-Weizsäcker preferences over gambles.
- Monotone additive costs of **Blackwell experiments**
 - Different paper: “From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again.”
 - Same authors.
 - Related ideas.
- Work in progress.
Talk Overview

- Definition of **monotone additive statistics**.
- Characterization.
- Applications.
 - Posted prices for **sacks of potatoes**.
 - Fishburn-Rubinstein **time preferences**.
 - Rabin-Weiszäcker preferences over **gambles**.
- Monotone additive costs of **Blackwell experiments**
 - Different paper: “From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again.”
 - Same authors.
 - Related ideas.
- Work in progress.
Talk Overview

- Definition of **monotone additive statistics**.
- Characterization.
- Applications.
 - Posted prices for **sacks of potatoes**.
 - Fishburn-Rubinstein **time preferences**.
 - Rabin-Weiszäcker preferences over **gambles**.
- Monotone additive costs of **Blackwell experiments**
 - Different paper: “From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again.”
 - Same authors.
 - Related ideas.
- **Work in progress.**
Talk Overview

- Definition of monotone additive statistics.
- Characterization.
- Applications.
 - Posted prices for sacks of potatoes.
 - Fishburn-Rubinstein time preferences.
 - Rabin-Weizsäcker preferences over gambles.
- Monotone additive costs of Blackwell experiments
 - Different paper: “From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again.”
- Same authors.
- Related ideas.

- Work in progress.
Talk Overview

- Definition of monotone additive statistics.
- Characterization.
- Applications.
 - Posted prices for sacks of potatoes.
 - Fishburn-Rubinstein time preferences.
 - Rabin-Weizsäcker preferences over gambles.
- Monotone additive costs of Blackwell experiments
 - Different paper: “From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again.”
 - Same authors.
 - Related ideas.

- Work in progress.
Talk Overview

- Definition of **monotone additive statistics**.
- Characterization.
- Applications.
 - Posted prices for *sacks of potatoes*.
 - Fishburn-Rubinstein *time preferences*.
 - Rabin-Weizsäcker preferences over *gambles*.
- Monotone additive costs of **Blackwell experiments**
 - Different paper: “From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again.”
 - Same authors.
 - Related ideas.
- Work in progress.
Talk Overview

- Definition of **monotone additive statistics**.
- Characterization.
- Applications.
 - Posted prices for **sacks of potatoes**.
 - Fishburn-Rubinstein **time preferences**.
 - Rabin-Weizsäcker preferences over **gambles**.
- Monotone additive costs of **Blackwell experiments**
 - Different paper: “From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again.”
 - Same authors.
 - Related ideas.
- Work in progress.
Talk Overview

- Definition of **monotone additive statistics**.
- Characterization.
- Applications.
 - Posted prices for **sacks of potatoes**.
 - Fishburn-Rubinstein **time preferences**.
 - Rabin-Weiszäcker preferences over **gambles**.
- Monotone additive costs of **Blackwell experiments**
 - Different paper: “From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again.”
 - Same authors.
 - Related ideas.
- Work in progress.
Talk Overview

- Definition of **monotone additive statistics**.
- Characterization.
- Applications.
 - Posted prices for **sacks of potatoes**.
 - Fishburn-Rubinstein **time preferences**.
 - Rabin-Weizsäcker preferences over **gambles**.
- Monotone additive costs of **Blackwell experiments**
 - Different paper: “From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again.”
 - Same authors.
 - Related ideas.
- **Work in progress**.
Monotone Additive Statistics

- **A statistic** is a way of capturing distributions by a single number.
 - Expectation.
 - Median.
 - Value at risk.
 - Certainty equivalent.

- Let L^∞ be the set of all bounded random variables.
 - A statistic is a map $\Phi : L^\infty \to \mathbb{R}$ such that
 - $\Phi(c) = c$.
 - If X and Y have the same distribution then $\Phi(X) = \Phi(Y)$.

- It is **monotone** if $X \geq_1 Y$ implies $\Phi(X) \geq \Phi(Y)$.

- Equivalently: it is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.
 - Because $X \geq_1 Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \geq \tilde{Y}$ a.s.

- A statistic is **additive** if $\Phi(X + Y) = \Phi(X) + \Phi(Y)$ whenever X and Y are independent.
A statistic is a way of capturing distributions by a single number.

- Expectation.
- Median.
- Value at risk.
- Certainty equivalent.

Let L^∞ be the set of all bounded random variables.

A statistic is a map $\Phi: L^\infty \to \mathbb{R}$ such that

1. $\Phi(c) = c$.
2. If X and Y have the same distribution then $\Phi(X) = \Phi(Y)$.

It is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.

Equivalently: it is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.

Because $X \geq Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \geq \tilde{Y}$ a.s.

A statistic is additive if $\Phi(X + Y) = \Phi(X) + \Phi(Y)$ whenever X and Y are independent.
A statistic is a way of capturing distributions by a single number.

- Expectation.
- Median.
- Value at risk.
- Certainty equivalent.

Let L^∞ be the set of all bounded random variables.

A statistic is a map $\Phi: L^\infty \to \mathbb{R}$ such that

- $\Phi(c) = c$.
- If X and Y have the same distribution then $\Phi(X) = \Phi(Y)$.

It is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.

Equivalently: it is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.

Because $X \geq Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \geq \tilde{Y}$ a.s.

A statistic is additive if $\Phi(X + Y) = \Phi(X) + \Phi(Y)$ whenever X and Y are independent.
Monotone Additive Statistics

- **A statistic** is a way of capturing distributions by a single number.
 - Expectation.
 - Median.
 - Value at risk.
 - Certainty equivalent.

- Let L^∞ be the set of all bounded random variables.

- A statistic is a map $\Phi: L^\infty \to \mathbb{R}$ such that
 - $\Phi(c) = c$.
 - If X and Y have the same distribution then $\Phi(X) = \Phi(Y)$.

- It is **monotone** if $X \geq_1 Y$ implies $\Phi(X) \geq \Phi(Y)$.

- Equivalently: it is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.
 - Because $X \geq_1 Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \geq \tilde{Y}$ a.s.

- A statistic is **additive** if $\Phi(X + Y) = \Phi(X) + \Phi(Y)$ whenever X and Y are independent.
Monotone Additive Statistics

- **A statistic** is a way of capturing distributions by a single number.
 - Expectation.
 - Median.
 - Value at risk.
 - Certainty equivalent.

- Let L^∞ be the set of all bounded random variables.

- A statistic is a map $\Phi: L^\infty \to \mathbb{R}$ such that
 - $\Phi(c) = c$.
 - If X and Y have the same distribution then $\Phi(X) = \Phi(Y)$.

- It is **monotone** if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.

- Equivalently: it is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.
 - Because $X \geq Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \geq \tilde{Y}$ a.s.

- A statistic is **additive** if $\Phi(X + Y) = \Phi(X) + \Phi(Y)$ whenever X and Y are independent.
A statistic is a way of capturing distributions by a single number.

- Expectation.
- Median.
- Value at risk.
- Certainty equivalent.

Let L^∞ be the set of all bounded random variables.

A statistic is a map $\Phi: L^\infty \to \mathbb{R}$ such that:

- $\Phi(c) = c$.
- If X and Y have the same distribution then $\Phi(X) = \Phi(Y)$.

It is monotone if $X \geq_Y Y$ implies $\Phi(X) \geq \Phi(Y)$.

Equivalently: it is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.

- Because $X \geq_Y Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \geq \tilde{Y}$ a.s.

A statistic is additive if $\Phi(X + Y) = \Phi(X) + \Phi(Y)$ whenever X and Y are independent.
A statistic is a way of capturing distributions by a single number.

- Expectation.
- Median.
- Value at risk.
- Certainty equivalent.

Let L^∞ be the set of all bounded random variables.

A statistic is a map $\Phi: L^\infty \to \mathbb{R}$ such that

1. $\Phi(c) = c$.
2. If X and Y have the same distribution then $\Phi(X) = \Phi(Y)$.

It is monotone if $X \geq_1 Y$ implies $\Phi(X) \geq \Phi(Y)$.

Equivalently: it is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.

- Because $X \geq_1 Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \geq \tilde{Y}$ a.s.

A statistic is additive if $\Phi(X + Y) = \Phi(X) + \Phi(Y)$ whenever X and Y are independent.
Monotone Additive Statistics

- A **statistic** is a way of capturing distributions by a single number.
 - Expectation.
 - Median.
 - Value at risk.
 - Certainty equivalent.

- Let L^∞ be the set of all bounded random variables.

- A **statistic** is a map $\Phi: L^\infty \to \mathbb{R}$ such that
 1. $\Phi(c) = c$.
 2. If X and Y have the same distribution then $\Phi(X) = \Phi(Y)$.

- It is **monotone** if $X \geq_1 Y$ implies $\Phi(X) \geq \Phi(Y)$.

- Equivalently: it is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.
 - Because $X \geq_1 Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \geq \tilde{Y}$ a.s.

- A statistic is **additive** if $\Phi(X + Y) = \Phi(X) + \Phi(Y)$ whenever X and Y are independent.
A statistic is a way of capturing distributions by a single number.

- Expectation.
- Median.
- Value at risk.
- Certainty equivalent.

Let L^∞ be the set of all bounded random variables.

A statistic is a map $\Phi: L^\infty \to \mathbb{R}$ such that

1. $\Phi(c) = c$.
2. If X and Y have the same distribution then $\Phi(X) = \Phi(Y)$.

It is monotone if $X \geq_1 Y$ implies $\Phi(X) \geq \Phi(Y)$.

Equivalently: it is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.

Because $X \geq_1 Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \geq \tilde{Y}$ a.s.

A statistic is additive if $\Phi(X + Y) = \Phi(X) + \Phi(Y)$ whenever X and Y are independent.
Monotone Additive Statistics

- A **statistic** is a way of capturing distributions by a single number.
 - Expectation.
 - Median.
 - Value at risk.
 - Certainty equivalent.

- Let L^∞ be the set of all bounded random variables.

- **A statistic** is a map $\Phi: L^\infty \to \mathbb{R}$ such that
 1. $\Phi(c) = c$.
 2. If X and Y have the same distribution then $\Phi(X) = \Phi(Y)$.

- It is **monotone** if $X \geq_1 Y$ implies $\Phi(X) \geq \Phi(Y)$.
 - Equivalently: it is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.
 - Because $X \geq_1 Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \geq \tilde{Y}$ a.s.

- A statistic is **additive** if $\Phi(X + Y) = \Phi(X) + \Phi(Y)$ whenever X and Y are independent.
Monotone Additive Statistics

- A **statistic** is a way of capturing distributions by a single number.
 - Expectation.
 - Median.
 - Value at risk.
 - Certainty equivalent.

- Let L^∞ be the set of all bounded random variables.

- A **statistic** is a map $\Phi: L^\infty \to \mathbb{R}$ such that
 1. $\Phi(c) = c$.
 2. If X and Y have the same distribution then $\Phi(X) = \Phi(Y)$.

- It is **monotone** if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.

- Equivalently: it is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.
 - Because $X \geq Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \geq \tilde{Y}$ a.s.

- A statistic is **additive** if $\Phi(X + Y) = \Phi(X) + \Phi(Y)$ whenever X and Y are independent.
Monotone Additive Statistics

- A **statistic** is a way of capturing distributions by a single number.
 - Expectation.
 - Median.
 - Value at risk.
 - Certainty equivalent.

- Let L^∞ be the set of all bounded random variables.

- A **statistic** is a map $\Phi : L^\infty \to \mathbb{R}$ such that
 1. $\Phi(c) = c$.
 2. If X and Y have the same distribution then $\Phi(X) = \Phi(Y)$.

- It is **monotone** if $X \geq_1 Y$ implies $\Phi(X) \geq \Phi(Y)$.

- Equivalently: it is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.
 - Because $X \geq_1 Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \geq \tilde{Y}$ a.s.

- A statistic is **additive** if $\Phi(X + Y) = \Phi(X) + \Phi(Y)$ whenever X and Y are independent.
A statistic is a way of capturing distributions by a single number.

- Expectation.
- Median.
- Value at risk.
- Certainty equivalent.

Let L^∞ be the set of all bounded random variables.

A statistic is a map $\Phi: L^\infty \rightarrow \mathbb{R}$ such that

1. $\Phi(c) = c$.
2. If X and Y have the same distribution then $\Phi(X) = \Phi(Y)$.

It is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.

Equivalently: it is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.

- Because $X \geq Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \geq \tilde{Y}$ a.s.

A statistic is additive if $\Phi(X + Y) = \Phi(X) + \Phi(Y)$ whenever X and Y are independent.
Question: What are the additive monotone statistics?
Examples of Monotone Additive Statistics

- $\mathbb{E}[X]$.
- $\max[X] = \sup\{c \in \mathbb{R} : \mathbb{P}[X \geq c] > 0\}$.
- $\min[X]$.
- For $a \neq 0$,
 \[S_a(X) = \frac{1}{a} \log \mathbb{E}[e^{aX}] \]
- By continuity
 - $S_0(X) = \mathbb{E}[X]$,
 - $S_\infty(X) = \max[X]$,
 - $S_{-\infty}(X) = \min[X]$.
Examples of Monotone Additive Statistics

- $\mathbb{E}[X]$.
- $\max[X] = \sup\{c \in \mathbb{R} : \mathbb{P}[X \geq c] > 0\}$.
- $\min[X]$.
- For $a \neq 0$,
 \[S_a(X) = \frac{1}{a} \log \mathbb{E}[e^{aX}] . \]
- By continuity
 - $S_0(X) = \mathbb{E}[X]$,
 - $S_\infty(X) = \max[X]$,
 - $S_{-\infty}(X) = \min[X]$.
Examples of Monotone Additive Statistics

- $\mathbb{E}[X]$.
- $\max[X] = \sup\{c \in \mathbb{R} : \mathbb{P}[X \geq c] > 0\}$.
- $\min[X]$.
- For $a \neq 0$,
 \[S_a(X) = \frac{1}{a} \log \mathbb{E}[e^{aX}] \]

By continuity
- $S_0(X) = \mathbb{E}[X]$,
- $S_\infty(X) = \max[X]$,
- $S_{-\infty}(X) = \min[X]$.
Examples of Monotone Additive Statistics

- $\mathbb{E}[X]$.
- $\max[X] = \sup\{c \in \mathbb{R} : \mathbb{P}[X \geq c] > 0\}$.
- $\min[X]$.
- For $a \neq 0$,
 \[
 S_a(X) = \frac{1}{a} \log \mathbb{E}[e^{aX}].
 \]
- By continuity
 - $S_0(X) = \mathbb{E}[X]$,
 - $S_\infty(X) = \max[X]$,
 - $S_{-\infty}(X) = \min[X]$.
Examples of Monotone Additive Statistics

- $\mathbb{E}[X]$.
- $\max[X] = \sup\{c \in \mathbb{R} : P[X \geq c] > 0\}$.
- $\min[X]$.
- For $a \neq 0$,
 \[S_a(X) = \frac{1}{a} \log \mathbb{E} \left[e^{aX} \right] . \]
- By continuity
 - $S_0(X) = \mathbb{E}[X]$,
 - $S_\infty(X) = \max[X]$,
 - $S_{-\infty}(X) = \min[X]$.
Examples of Monotone Additive Statistics

- $\mathbb{E}[X]$.
- $\max[X] = \sup\{c \in \mathbb{R} : \mathbb{P}[X \geq c] > 0\}$.
- $\min[X]$.
- For $a \neq 0$,
 \[S_a(X) = \frac{1}{a} \log \mathbb{E}[e^{aX}] \].

By continuity
 - $S_0(X) = \mathbb{E}[X]$,
 - $S_\infty(X) = \max[X]$,
 - $S_{-\infty}(X) = \min[X]$.
Examples of Monotone Additive Statistics

- $\mathbb{E}[X]$.
- $\max[X] = \sup\{c \in \mathbb{R} : \mathbb{P}[X \geq c] > 0\}$.
- $\min[X]$.
- For $a \neq 0$,
 \[S_a(X) = \frac{1}{a} \log \mathbb{E}[e^{aX}] \]

By continuity
- $S_0(X) = \mathbb{E}[X]$,
- $S_\infty(X) = \max[X]$,
- $S_{-\infty}(X) = \min[X]$.
Examples of Monotone Additive Statistics

- $\mathbb{E}[X]$.
- $\max[X] = \sup\{c \in \mathbb{R} : \mathbb{P}[X \geq c] > 0\}$.
- $\min[X]$.
- For $a \neq 0$,
 \[
 S_a(X) = \frac{1}{a} \log \mathbb{E}[e^{aX}].
 \]
- By continuity
 - $S_0(X) = \mathbb{E}[X]$,
 - $S_\infty(X) = \max[X]$,
 - $S_{-\infty}(X) = \min[X]$.
Characterization

- Is there anything beside the S_a’s?
- Main result: this is it.
- Well... we can also take weighted averages.

Theorem

Let Φ be a monotone additive statistic. Then there is a probability measure m on $\mathbb{R} \cup \{+\infty, -\infty\}$ such that

$$
\Phi(X) = \int S_a(X) \, dm(a).
$$

- $\{S_a\}$ are the extreme points of the set of additive monotone statistics.
Characterization

- Is there anything beside the S_a's?
- Main result: this is it.
- Well... we can also take weighted averages.

Theorem

Let Φ be a monotone additive statistic. Then there is a probability measure m on $\mathbb{R} \cup \{+\infty, -\infty\}$ such that

$$\Phi(X) = \int S_a(X) \, dm(a).$$

- $\{S_a\}$ are the extreme points of the set of additive monotone statistics.
Characterization

- Is there anything beside the S_a’s?
- Main result: this is it.
- Well... we can also take weighted averages.

Theorem

Let Φ be a monotone additive statistic. Then there is a probability measure m on $\mathbb{R} \cup \{+\infty, -\infty\}$ such that

$$\Phi(X) = \int S_a(X) \, dm(a).$$

- $\{S_a\}$ are the extreme points of the set of additive monotone statistics.
Characterization

- Is there anything beside the S_a’s?
- Main result: this is it.
- Well... we can also take weighted averages.

Theorem

Let Φ be a monotone additive statistic. Then there is a probability measure m on $\mathbb{R} \cup \{+\infty, -\infty\}$ such that

\[\Phi(X) = \int S_a(X) \, dm(a). \]

- $\{S_a\}$ are the extreme points of the set of additive monotone statistics.
Is there anything beside the S_a’s?

Main result: this is it.

Well... we can also take weighted averages.

Theorem

Let Φ be a monotone additive statistic. Then there is a probability measure m on $\mathbb{R} \cup \{+\infty, -\infty\}$ such that

$$\Phi(X) = \int S_a(X) \, dm(a).$$

$\{S_a\}$ are the extreme points of the set of additive monotone statistics.
Proof ideas

- Take \(X, Y \) that are not ranked under FOSD.
- Is it possible that there is an independent \(R \) such that \(X + R \geq_1 Y + R \)?
- Example: \(X \sim B(1/3), \ Y \sim U([-3/5, 2/5]) \).

- Works for \(\mathbb{P}[R = \pm 1/5] = 1/2 \).
Proof ideas

- Take X, Y that are not ranked under FOSD.
- Is it possible that there is an independent R such that $X + R \geq Y + R$?
- Example: $X \sim B(1/3), Y \sim U([-3/5, 2/5])$.

- Works for $P[R = \pm 1/5] = 1/2$.
Proof ideas

- Take X, Y that are not ranked under FOSD.
- Is it possible that there is a independent R such that $X + R \geq Y + R$?
- Example: $X \sim B(1/3), Y \sim U([-3/5, 2/5])$.

- Works for $\mathbb{P}[R = \pm 1/5] = 1/2$.
Proof ideas

- Take X, Y that are not ranked under FOSD.
- Is it possible that there is an independent R such that $X + R \geq 1 Y + R$?
- Example: $X \sim B(1/3), Y \sim U([−3/5, 2/5])$.

![Graph showing probability distribution]

- Works for $\mathbb{P}[R = \pm 1/5] = 1/2$.

![Graph showing another probability distribution]
Proof ideas

- Pomatto, Strack, Tamuz (2019): If $\mathbb{E}[X] > \mathbb{E}[Y]$ then $X + R \geq_1 Y + R$ for some independent R.

- Under what conditions on X, Y is there a bounded independent r.v. R such that $X + R \geq_1 Y + R$?

- If $S_a(X) < S_a(Y)$ for some a this is impossible, since

$$S_a(X + R) = S_a(X) + S_a(R) < S_a(Y) + S_a(R) = S_a(Y + R).$$

Theorem

For $X, Y \in L^\infty$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^\infty$ such that $X + R \geq_1 Y + R$.

- Corollary: if $S_a(X) > S_a(Y)$ for all a, then $\Phi(X) \geq \Phi(Y)$, because

$$\Phi(X) + \Phi(R) = \Phi(X + R) \geq \Phi(Y + R) = \Phi(Y) + \Phi(R).$$

- Rest of the proof: exercise in analysis.
Proof ideas

- Pomatto, Strack, Tamuz (2019): If $\mathbb{E}[X] > \mathbb{E}[Y]$ then $X + R \geq_1 Y + R$ for some independent R.

- Under what conditions on X, Y is there a bounded independent r.v. R such that $X + R \geq_1 Y + R$?

 - If $S_a(X) < S_a(Y)$ for some a this is impossible, since

 $$S_a(X + R) = S_a(X) + S_a(R) < S_a(Y) + S_a(R) = S_a(Y + R).$$

Theorem

For $X, Y \in L^\infty$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^\infty$ such that $X + R \geq_1 Y + R$.

- Corollary: if $S_a(X) > S_a(Y)$ for all a, then $\Phi(X) \geq \Phi(Y)$, because

 $$\Phi(X) + \Phi(R) = \Phi(X + R) \geq \Phi(Y + R) = \Phi(Y) + \Phi(R)$$

- Rest of the proof: exercise in analysis.
Proof ideas

- Pomatto, Strack, Tamuz (2019): If $\mathbb{E}[X] > \mathbb{E}[Y]$ then $X + R \geq_1 Y + R$ for some independent R.

- Under what conditions on X, Y is there a bounded independent r.v. R such that $X + R \geq_1 Y + R$?

- If $S_a(X) < S_a(Y)$ for some a this is impossible, since

 $$S_a(X + R) = S_a(X) + S_a(R) < S_a(Y) + S_a(R) = S_a(Y + R).$$

Theorem

For $X, Y \in L^\infty$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^\infty$ such that $X + R \geq_1 Y + R$.

- Corollary: if $S_a(X) > S_a(Y)$ for all a, then $\Phi(X) \geq \Phi(Y)$, because

 $$\Phi(X) + \Phi(R) = \Phi(X + R) \geq \Phi(Y + R) = \Phi(Y) + \Phi(R)$$

- Rest of the proof: exercise in analysis.
Proof ideas

- Pomatto, Strack, Tamuz (2019): If $\mathbb{E}[X] > \mathbb{E}[Y]$ then $X + R \geq_1 Y + R$ for some independent R.

- Under what conditions on X, Y is there a **bounded** independent r.v. R such that $X + R \geq_1 Y + R$?

- If $S_a(X) < S_a(Y)$ for some a this is impossible, since

 $$S_a(X + R) = S_a(X) + S_a(R) < S_a(Y) + S_a(R) = S_a(Y + R).$$

Theorem

For $X, Y \in L^\infty$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^\infty$ such that $X + R \geq_1 Y + R$.

- Corollary: if $S_a(X) > S_a(Y)$ for all a, then $\Phi(X) \geq \Phi(Y)$, because

 $$\Phi(X) + \Phi(R) = \Phi(X + R) \geq \Phi(Y + R) = \Phi(Y) + \Phi(R)$$

- Rest of the proof: exercise in analysis.
Proof ideas

- Pomatto, Strack, Tamuz (2019): If $\mathbb{E}[X] > \mathbb{E}[Y]$ then $X + R \geq Y + R$ for some independent R.

- Under what conditions on X, Y is there a bounded independent r.v. R such that $X + R \geq Y + R$?

- If $S_a(X) < S_a(Y)$ for some a this is impossible, since

$$S_a(X + R) = S_a(X) + S_a(R) < S_a(Y) + S_a(R) = S_a(Y + R).$$

Theorem

For $X, Y \in L^\infty$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^\infty$ such that $X + R \geq Y + R$.

- Corollary: if $S_a(X) > S_a(Y)$ for all a, then $\Phi(X) \geq \Phi(Y)$, because

$$\Phi(X) + \Phi(R) = \Phi(X + R) \geq \Phi(Y + R) = \Phi(Y) + \Phi(R)$$

- Rest of the proof: exercise in analysis.
Proof ideas

- Pomatto, Strack, Tamuz (2019): If $\mathbb{E}[X] > \mathbb{E}[Y]$ then $X + R \geq_1 Y + R$ for some independent R.

- Under what conditions on X, Y is there a bounded independent r.v. R such that $X + R \geq_1 Y + R$?

- If $S_a(X) < S_a(Y)$ for some a this is impossible, since
 \[
 S_a(X + R) = S_a(X) + S_a(R) < S_a(Y) + S_a(R) = S_a(Y + R).
 \]

Theorem

For $X, Y \in L^\infty$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^\infty$ such that $X + R \geq_1 Y + R$.

- Corollary: if $S_a(X) > S_a(Y)$ for all a, then $\Phi(X) \geq \Phi(Y)$, because
 \[
 \Phi(X) + \Phi(R) = \Phi(X + R) \geq \Phi(Y + R) = \Phi(Y) + \Phi(R).
 \]

- Rest of the proof: exercise in analysis.
Proof ideas

Theorem

For $X, Y \in L^\infty$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^\infty$ such that $X + R \geq_1 Y + R$.

- Let F, G be the cdfs of X, Y, supported on $[-N, N]$.
- We will find an R with pdf h such that $G \ast h \geq F \ast h$.
- Let $h(x) = e^{-x^2/2V}$. Then

\[
[(G - F) \ast h](y) = \int_{-N}^{N} [G(x) - F(x)] \cdot h(y - x) \, dx \\
= e^{-y^2/2V} \cdot \int_{-N}^{N} [G(x) - F(x)] \cdot e^y \cdot x \cdot e^{-x^2/2V} \, dx.
\]

- Works because
 - $e^{-y^2/2V} \approx 1$ for $x \in [-N, N]$ and large V.
 - $a \int_{-N}^{N} [G(x) - F(x)] \cdot e^{ax} \, dx = E[h^{aX}] - E[h^{aY}] > 0$.
- Need to truncate, worry about uniformity over V.

Proof ideas

Theorem

For \(X, Y \in L^\infty \), if \(S_a(X) > S_a(Y) \) for all \(a \), then there exists an \(R \in L^\infty \) such that \(X + R \geq_1 Y + R \).

- Let \(F, G \) be the cdfs of \(X, Y \), supported on \([−N, N]\).
- We will find an \(R \) with pdf \(h \) such that \(G \ast h \geq F \ast h \).
- Let \(h(x) = e^{-x^2/2V} \). Then

\[
[(G - F) \ast h](y) = \int_{-N}^{N} [G(x) - F(x)] \cdot h(y - x) \, dx
\]

\[
= e^{-\frac{y^2}{2V}} \cdot \int_{-N}^{N} [G(x) - F(x)] \cdot e^{\frac{y}{V} \cdot x} \cdot e^{-\frac{x^2}{2V}} \, dx.
\]

- Works because
 - \(e^{-\frac{x^2}{2V}} \approx 1 \) for \(x \in [−N, N] \) and large \(V \).
 - \(a \int_{-N}^{N} [G(x) - F(x)] \cdot e^{ax} \, dx = \mathbb{E} \left[e^{aX} \right] - \mathbb{E} \left[e^{aY} \right] > 0 \).
- Need to truncate, worry about uniformity over \(V \).
Proof ideas

Theorem

For $X, Y \in L^\infty$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^\infty$ such that $X + R \geq_1 Y + R$.

- Let F, G be the cdfs of X, Y, supported on $[-N, N]$.
- We will find an R with pdf h such that $G \ast h \geq F \ast h$.
- Let $h(x) = e^{-x^2/2V}$. Then

 $$(G - F) \ast h(y) = \int_{-N}^{N} [G(x) - F(x)] \cdot h(y - x) \, dx$$

 $$= e^{-\frac{y^2}{2V}} \cdot \int_{-N}^{N} [G(x) - F(x)] \cdot e^{\frac{y}{V}} \cdot x \cdot e^{-\frac{x^2}{2V}} \, dx.$$

- Works because
 - $e^{-\frac{x^2}{2V}} \approx 1$ for $x \in [-N, N]$ and large V.
 - $a \int_{-N}^{N} [G(x) - F(x)] \cdot e^{ax} \, dx = \mathbb{E} [e^{aX}] - \mathbb{E} [e^{aY}] > 0$.

- Need to truncate, worry about uniformity over V.
Proof ideas

Theorem

For $X, Y \in L^\infty$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^\infty$ such that $X + R \geq_1 Y + R$.

- Let F, G be the cdfs of X, Y, supported on $[-N, N]$.
- We will find an R with pdf h such that $G * h \geq F * h$.
- Let $h(x) = e^{-x^2/2V}$. Then

$$[(G - F) * h](y) = \int_{-N}^{N} [G(x) - F(x)] \cdot h(y - x) \, dx$$

$$= e^{-\frac{y^2}{2V}} \cdot \int_{-N}^{N} [G(x) - F(x)] \cdot e^{\frac{y}{V} \cdot x} \cdot e^{-\frac{x^2}{2V}} \, dx.$$

- Works because
 - $e^{-\frac{x^2}{2V}} \approx 1$ for $x \in [-N, N]$ and large V.
 - $a \int_{-N}^{N} [G(x) - F(x)] \cdot e^{ax} \, dx = \mathbb{E} [e^{aX}] - \mathbb{E} [e^{aY}] > 0$.
- Need to truncate, worry about uniformity over V.
Proof ideas

Theorem

For \(X,Y \in L^\infty\), if \(S_a(X) > S_a(Y)\) for all \(a\), then there exists an \(R \in L^\infty\) such that \(X + R \geq_{1} Y + R\).

- Let \(F, G\) be the cdfs of \(X, Y\), supported on \([-N, N]\).
- We will find an \(R\) with pdf \(h\) such that \(G * h \geq F * h\).
- Let \(h(x) = e^{-x^2/2V}\). Then

\[
[(G - F) * h](y) = \int_{-N}^{N} [G(x) - F(x)] \cdot h(y - x) \, dx
\]

\[
= e^{-y^2/2V} \cdot \int_{-N}^{N} [G(x) - F(x)] \cdot e^{yV} \cdot x \cdot e^{-x^2/2V} \, dx.
\]

- Works because
 1. \(e^{-x^2/2V} \approx 1\) for \(x \in [-N, N]\) and large \(V\).
 2. \(a \int_{-N}^{N} [G(x) - F(x)] \cdot e^{ax} \, dx = \mathbb{E} [e^{aX}] - \mathbb{E} [e^{aY}] > 0\).

- Need to truncate, worry about uniformity over \(V\).
Proof ideas

Theorem

For $X, Y \in L^\infty$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^\infty$ such that $X + R \geq_1 Y + R$.

- Let F, G be the cdfs of X, Y, supported on $[-N, N]$.
- We will find an R with pdf h such that $G \ast h \geq F \ast h$.
- Let $h(x) = e^{-x^2/2V}$. Then

 $$
 [(G - F) \ast h](y) = \int_{-N}^{N} [G(x) - F(x)] \cdot h(y - x) \, dx
 $$

 $$
 = e^{-\frac{y^2}{2V}} \cdot \int_{-N}^{N} [G(x) - F(x)] \cdot e^{\frac{y}{V} \cdot x} \cdot e^{-\frac{x^2}{2V}} \, dx.
 $$

- Works because
 1. $e^{-\frac{x^2}{2V}} \approx 1$ for $x \in [-N, N]$ and large V.
 2. $a \int_{-N}^{N} [G(x) - F(x)] \cdot e^{ax} \, dx = \mathbb{E} \left[e^{aX} \right] - \mathbb{E} \left[e^{aY} \right] > 0$.
- Need to truncate, worry about uniformity over V.

Proof ideas

Theorem

For $X, Y \in L^\infty$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^\infty$ such that $X + R \succeq_1 Y + R$.

- Let F, G be the cdfs of X, Y, supported on $[-N, N]$.
- We will find an R with pdf h such that $G \ast h \geq F \ast h$.
- Let $h(x) = e^{-x^2/2V}$. Then

\[
[(G - F) \ast h](y) = \int_{-N}^{N} [G(x) - F(x)] \cdot h(y - x) \, dx
\]

\[
= e^{-\frac{y^2}{2V}} \cdot \int_{-N}^{N} [G(x) - F(x)] \cdot e^{\frac{y}{V} \cdot x} \cdot e^{-\frac{x^2}{2V}} \, dx.
\]

- Works because
 1. $e^{-\frac{x^2}{2V}} \approx 1$ for $x \in [-N, N]$ and large V.
 2. $a \int_{-N}^{N} [G(x) - F(x)] \cdot e^{ax} \, dx = \mathbb{E} \left[e^{aX} \right] - \mathbb{E} \left[e^{aY} \right] > 0$.

- Need to truncate, worry about uniformity over V.
Theorem

For $X,Y \in L^\infty$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^\infty$ such that $X + R \geq_1 Y + R$.

- Let F, G be the cdfs of X, Y, supported on $[-N, N]$.
- We will find an R with pdf h such that $G \ast h \geq F \ast h$.
- Let $h(x) = e^{-x^2/2V}$. Then

$$[(G - F) \ast h](y) = \int_{-N}^{N} [G(x) - F(x)] \cdot h(y - x) \, dx$$

$$= e^{-y^2/2V} \cdot \int_{-N}^{N} [G(x) - F(x)] \cdot e^{y \cdot x} \cdot e^{-x^2/2V} \, dx.$$

- Works because
 1. $e^{-x^2/2V} \approx 1$ for $x \in [-N, N]$ and large V.
 2. $a \int_{-N}^{N} [G(x) - F(x)] \cdot e^{ax} \, dx = \mathbb{E} [e^{aX}] - \mathbb{E} [e^{aY}] > 0$.

- Need to truncate, worry about uniformity over V.

Proof ideas
Application: Posted Prices for Sacks of Potatoes

- Consider a buyer who posts her prices for *potatoes*.
- Farmers come and sell her their crops.

<table>
<thead>
<tr>
<th>Potatoes</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1</td>
</tr>
<tr>
<td>2</td>
<td>$2</td>
</tr>
<tr>
<td>3</td>
<td>$3.10</td>
</tr>
<tr>
<td>4</td>
<td>$4</td>
</tr>
<tr>
<td>5</td>
<td>$5</td>
</tr>
<tr>
<td>6</td>
<td>$6</td>
</tr>
<tr>
<td>7</td>
<td>$5</td>
</tr>
</tbody>
</table>

- Price $P : \mathbb{R}_+ \rightarrow \mathbb{R}_+$.
- Free disposal: $x \geq y$ implies $P(x) \geq P(y)$.
- No mergers: $P(x + y) \leq P(x) + P(y)$.
- No splits: $P(x + y) \geq P(x) + P(y)$.
- Theorem: $P(x) = P(1) \cdot x$.
Consider a buyer who posts her prices for **potatoes**.

Farmers come and sell her their crops.

<table>
<thead>
<tr>
<th>Potatoes</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1</td>
</tr>
<tr>
<td>2</td>
<td>$2</td>
</tr>
<tr>
<td>3</td>
<td>$3.10</td>
</tr>
<tr>
<td>4</td>
<td>$4</td>
</tr>
<tr>
<td>5</td>
<td>$5</td>
</tr>
<tr>
<td>6</td>
<td>$6</td>
</tr>
<tr>
<td>7</td>
<td>$5</td>
</tr>
</tbody>
</table>

Price $P : \mathbb{R}_+ \rightarrow \mathbb{R}_+$.

Free disposal: $x \geq y$ implies $P(x) \geq P(y)$.

No mergers: $P(x + y) \leq P(x) + P(y)$.

No splits: $P(x + y) \geq P(x) + P(y)$.

Theorem: $P(x) = P(1) \cdot x$.
Application: Posted Prices for Sacks of Potatoes

- Consider a buyer who posts her prices for potatoes.
- Farmers come and sell her their crops.

<table>
<thead>
<tr>
<th>Potatoes</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1</td>
</tr>
<tr>
<td>2</td>
<td>$2</td>
</tr>
<tr>
<td>3</td>
<td>$3.10</td>
</tr>
<tr>
<td>4</td>
<td>$4</td>
</tr>
<tr>
<td>5</td>
<td>$5</td>
</tr>
<tr>
<td>6</td>
<td>$6</td>
</tr>
<tr>
<td>7</td>
<td>$5</td>
</tr>
</tbody>
</table>

- Price $P : \mathbb{R}_+ \to \mathbb{R}_+$.
- Free disposal: $x \geq y$ implies $P(x) \geq P(y)$.
- No mergers: $P(x + y) \leq P(x) + P(y)$.
- No splits: $P(x + y) \geq P(x) + P(y)$.
- Theorem: $P(x) = P(1) \cdot x$.
Consider a buyer who posts her prices for \textit{potatoes}.

Farmers come and sell her their crops.

<table>
<thead>
<tr>
<th>Potatoes</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1</td>
</tr>
<tr>
<td>2</td>
<td>$2</td>
</tr>
<tr>
<td>3</td>
<td>$3.10</td>
</tr>
<tr>
<td>4</td>
<td>$4</td>
</tr>
<tr>
<td>5</td>
<td>$5</td>
</tr>
<tr>
<td>6</td>
<td>$6</td>
</tr>
<tr>
<td>7</td>
<td>$5</td>
</tr>
</tbody>
</table>

Price $P : \mathbb{R}_+ \rightarrow \mathbb{R}_+$.

\textbf{Free disposal}: $x \geq y$ implies $P(x) \geq P(y)$.

\textbf{No mergers}: $P(x + y) \leq P(x) + P(y)$.

\textbf{No splits}: $P(x + y) \geq P(x) + P(y)$.

\textbf{Theorem}: $P(x) = P(1) \cdot x$.
Application: Posted Prices for Sacks of Potatoes

- Consider a buyer who posts her prices for **potatoes**.
- Farmers come and sell her their crops.

<table>
<thead>
<tr>
<th>Potatoes</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1</td>
</tr>
<tr>
<td>2</td>
<td>$2</td>
</tr>
<tr>
<td>3</td>
<td>$3.10</td>
</tr>
<tr>
<td>4</td>
<td>$4</td>
</tr>
<tr>
<td>5</td>
<td>$5</td>
</tr>
<tr>
<td>6</td>
<td>$6</td>
</tr>
<tr>
<td>7</td>
<td>$5</td>
</tr>
</tbody>
</table>

- Price $P : \mathbb{R}_+ \to \mathbb{R}_+$.
- **Free disposal**: $x \geq y$ implies $P(x) \geq P(y)$.
- **No mergers**: $P(x + y) \leq P(x) + P(y)$.
- **No splits**: $P(x + y) \geq P(x) + P(y)$.
- Theorem: $P(x) = P(1) \cdot x$.
Consider a buyer who posts her prices for potatoes.

Farmers come and sell her their crops.

<table>
<thead>
<tr>
<th>Potatoes</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1</td>
</tr>
<tr>
<td>2</td>
<td>$2</td>
</tr>
<tr>
<td>3</td>
<td>$3.10</td>
</tr>
<tr>
<td>4</td>
<td>$4</td>
</tr>
<tr>
<td>5</td>
<td>$5</td>
</tr>
<tr>
<td>6</td>
<td>$6</td>
</tr>
<tr>
<td>7</td>
<td>$5</td>
</tr>
</tbody>
</table>

Price $P: \mathbb{R}_+ \rightarrow \mathbb{R}_+$.

Free disposal: $x \geq y$ implies $P(x) \geq P(y)$.

No mergers: $P(x + y) \leq P(x) + P(y)$.

No splits: $P(x + y) \geq P(x) + P(y)$.

Theorem: $P(x) = P(1) \cdot x$.
Consider a buyer who posts her prices for **potatoes**.

Farmers come and sell her their crops.

<table>
<thead>
<tr>
<th>Potatoes</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1</td>
</tr>
<tr>
<td>2</td>
<td>$2</td>
</tr>
<tr>
<td>3</td>
<td>$3.10</td>
</tr>
<tr>
<td>4</td>
<td>$4</td>
</tr>
<tr>
<td>5</td>
<td>$5</td>
</tr>
<tr>
<td>6</td>
<td>$6</td>
</tr>
<tr>
<td>7</td>
<td>$5</td>
</tr>
</tbody>
</table>

Price $P : \mathbb{R}_+ \rightarrow \mathbb{R}_+$.

Free disposal: $x \geq y$ implies $P(x) \geq P(y)$.

No mergers: $P(x + y) \leq P(x) + P(y)$.

No splits: $P(x + y) \geq P(x) + P(y)$.

Theorem: $P(x) = P(1) \cdot x$.
Consider a buyer who posts her prices for

sacks

do potatoes.

Farmers come and sell her their crops.

Price $P : L_+^\infty \to \mathbb{R}_+$.

Free disposal: $X \geq_1 Y$ implies $P(X) \geq P(Y)$.

No mergers: $P(X + Y) \leq P(X) + P(Y)$.

No splits: $P(X + Y) \geq P(X) + P(Y)$.

So $P(X) = P(1) \cdot \Phi(X)$ for some monotone additive statistic Φ.

Consider a buyer who posts her prices for sacks of potatoes.

Farmers come and sell her their crops.

- Price $P : L^\infty_+ \rightarrow \mathbb{R}_+$.
- Free disposal: $X \geq_1 Y$ implies $P(X) \geq P(Y)$.
- No mergers: $P(X + Y) \leq P(X) + P(Y)$.
- No splits: $P(X + Y) \geq P(X) + P(Y)$.
- So $P(X) = P(1) \cdot \Phi(X)$ for some monotone additive statistic Φ.
Consider a buyer who posts her prices for sacks of potatoes. Farmers come and sell her their crops. Price $P : L^\infty_+ \to \mathbb{R}_+$.

- Free disposal: $X \geq_1 Y$ implies $P(X) \geq P(Y)$.
- No mergers: $P(X + Y) \leq P(X) + P(Y)$.
- No splits: $P(X + Y) \geq P(X) + P(Y)$.
- So $P(X) = P(1) \cdot \Phi(X)$ for some monotone additive statistic Φ.
Consider a buyer who posts her prices for **sacks** of potatoes.

Farmers come and sell her their crops.

Price $P: L_+^\infty \to \mathbb{R}_+$.

Free disposal: $X \geq_1 Y$ implies $P(X) \geq P(Y)$.

No mergers: $P(X + Y) \leq P(X) + P(Y)$.

No splits: $P(X + Y) \geq P(X) + P(Y)$.

So $P(X) = P(1) \cdot \Phi(X)$ for some monotone additive statistic Φ.
Consider a buyer who posts her prices for **sacks** of potatoes.

Farmers come and sell her their crops.

Price $P : L_+^\infty \rightarrow \mathbb{R}^+$.

Free disposal: $X \geq_1 Y$ implies $P(X) \geq P(Y)$.

No mergers: $P(X + Y) \leq P(X) + P(Y)$.

No splits: $P(X + Y) \geq P(X) + P(Y)$.

So $P(X) = P(1) \cdot \Phi(X)$ for some monotone additive statistic Φ.
Consider a buyer who posts her prices for sacks of potatoes.

Farmers come and sell her their crops.

Price $P: L^\infty_+ \to \mathbb{R}_+$.

Free disposal: $X \geq_Y Y$ implies $P(X) \geq P(Y)$.

No mergers: $P(X + Y) \leq P(X) + P(Y)$.

No splits: $P(X + Y) \geq P(X) + P(Y)$.

So $P(X) = P(1) \cdot \Phi(X)$ for some monotone additive statistic Φ.
Consider a buyer who posts her prices for sacks of potatoes.

Farmers come and sell her their crops.

Price \(P : L_+^\infty \rightarrow \mathbb{R}_+ \).

Free disposal: \(X \geq_1 Y \) implies \(P(X) \geq P(Y) \).

No mergers: \(P(X + Y) \leq P(X) + P(Y) \).

No splits: \(P(X + Y) \geq P(X) + P(Y) \).

So \(P(X) = P(1) \cdot \Phi(X) \) for some monotone additive statistic \(\Phi \).
A pair \((x,t)\) is a (positive) amount of money \(x\) at (non-negative) time \(t\). The set of such pairs is \(\Omega = \mathbb{R}^{++} \times \mathbb{R}_+\).

Fishburn and Rubinstein consider preferences \(\succ\) over \(\Omega\).

Axiom

1. If \(x \succ y\) then \((x,t) \succ (y,t)\).
2. If \(t \prec s\) then \((x,t) \succ (x,s)\).
3. If \((x,t) \succ (y,s)\) then \((x,t+\tau) \succ (y,s+\tau)\).
4. Upper and lower contour sets are closed.

All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)
The axioms imply that \(\succ\) is represented by \(f(x,t) = u(x)e^{-rt}\) for some \(r > 0\), and an increasing \(u: \mathbb{R}^{++} \to \mathbb{R}^{++}\).
Application: Fishburn-Rubinstein Time Preferences

- A pair \((x, t)\) is a (positive) amount of money \(x\) at (non-negative) time \(t\). The set of such pairs is \(\Omega = \mathbb{R}_{++} \times \mathbb{R}_+\).

- Fishburn and Rubinstein consider preferences \(\succ\) over \(\Omega\).

Axiom

1. If \(x > y\) then \((x, t) \succ (y, t)\).
2. If \(t < s\) then \((x, t) \succ (x, s)\).
3. If \((x, t) \succ (y, s)\) then \((x, t + \tau) \succ (y, s + \tau)\).
4. Upper and lower contour sets are closed.

- All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)

The axioms imply that \(\succ\) is represented by \(f(x, t) = u(x)e^{-rt}\) for some \(r > 0\), and an increasing \(u: \mathbb{R}_{++} \rightarrow \mathbb{R}_{++}\).
Application: Fishburn-Rubinstein Time Preferences

- A pair \((x, t)\) is a (positive) amount of money \(x\) at (non-negative) time \(t\). The set of such pairs is \(\Omega = \mathbb{R}_{++} \times \mathbb{R}_+\).

- Fishburn and Rubinstein consider preferences \(\succ\) over \(\Omega\).

Axiom

1. If \(x > y\) then \((x, t) \succ (y, t)\).
2. If \(t < s\) then \((x, t) \succ (x, s)\).
3. If \((x, t) \succ (y, s)\) then \((x, t + \tau) \succ (y, s + \tau)\).
4. Upper and lower contour sets are closed.

- All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)

The axioms imply that \(\succ\) is represented by \(f(x, t) = u(x)e^{-rt}\) for some \(r > 0\), and an increasing \(u: \mathbb{R}_{++} \to \mathbb{R}_{++}\).
A pair \((x, t)\) is a (positive) amount of money \(x\) at (non-negative) time \(t\). The set of such pairs is \(\Omega = \mathbb{R}_{++} \times \mathbb{R}_+\).

Fishburn and Rubinstein consider preferences \(\succ\) over \(\Omega\).

Axiom

1. If \(x > y\) then \((x, t) \succ (y, t)\).
2. If \(t < s\) then \((x, t) \succ (x, s)\).
3. If \((x, t) \succ (y, s)\) then \((x, t + \tau) \succ (y, s + \tau)\).
4. Upper and lower contour sets are closed.

All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)

The axioms imply that \(\succ\) is represented by \(f(x, t) = u(x)e^{-rt}\) for some \(r > 0\), and an increasing \(u: \mathbb{R}_{++} \to \mathbb{R}_{++}\).
A pair \((x, t)\) is a (positive) amount of money \(x\) at (non-negative) time \(t\). The set of such pairs is \(\Omega = \mathbb{R}^{++} \times \mathbb{R}_{++}\).

Fishburn and Rubinstein consider preferences \(\succ\) over \(\Omega\).

Axiom

1. If \(x > y\) then \((x, t) \succ (y, t)\).
2. If \(t < s\) then \((x, t) \succ (x, s)\).
3. If \((x, t) \succ (y, s)\) then \((x, t + \tau) \succ (y, s + \tau)\).
4. Upper and lower contour sets are closed.

All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)

The axioms imply that \(\succ\) is represented by \(f(x, t) = u(x)e^{-rt}\) for some \(r > 0\), and an increasing \(u: \mathbb{R}^{++} \to \mathbb{R}^{++}\).
Application: Fishburn-Rubinstein Time Preferences

- A pair \((x, t)\) is a (positive) amount of money \(x\) at (non-negative) time \(t\). The set of such pairs is \(\Omega = \mathbb{R}^{++} \times \mathbb{R}^{+}\).

- Fishburn and Rubinstein consider preferences \(\succ\) over \(\Omega\).

Axiom

1. *If* \(x > y\), *then* \((x, t) \succ (y, t)\).
2. *If* \(t < s\), *then* \((x, t) \succ (x, s)\).
3. *If* \((x, t) \succ (y, s)\), *then* \((x, t + \tau) \succ (y, s + \tau)\).
4. *Upper and lower contour sets are closed.*

- All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)

The axioms imply that \(\succ\) is represented by \(f(x, t) = u(x)e^{-rt}\) for some \(r > 0\), and an increasing \(u: \mathbb{R}^{++} \rightarrow \mathbb{R}^{++}\).
A pair \((x, t)\) is a (positive) amount of money \(x\) at (non-negative) time \(t\). The set of such pairs is \(\Omega = \mathbb{R}_{++} \times \mathbb{R}_{+}\).

Fishburn and Rubinstein consider preferences \(\succ\) over \(\Omega\).

Axiom

1. If \(x > y\) then \((x, t) \succ (y, t)\).
2. If \(t < s\) then \((x, t) \succ (x, s)\).
3. If \((x, t) \succ (y, s)\) then \((x, t + \tau) \succ (y, s + \tau)\).
4. Upper and lower contour sets are closed.

All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)

The axioms imply that \(\succ\) is represented by \(f(x, t) = u(x)e^{-rt}\) for some \(r > 0\), and an increasing \(u: \mathbb{R}_{++} \rightarrow \mathbb{R}_{++}\).
Application: Fishburn-Rubinstein Time Preferences

- A pair \((x, t)\) is a (positive) amount of money \(x\) at (non-negative) time \(t\). The set of such pairs is \(\Omega = \mathbb{R}^{++} \times \mathbb{R}_+\).
- Fishburn and Rubinstein consider preferences \(\succ\) over \(\Omega\).

Axiom

1. If \(x > y\) then \((x, t) \succ (y, t)\).
2. If \(t < s\) then \((x, t) \succ (x, s)\).
3. If \((x, t) \succ (y, s)\) then \((x, t + \tau) \succ (y, s + \tau)\).
4. Upper and lower contour sets are closed.

- All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)

The axioms imply that \(\succ\) is represented by \(f(x, t) = u(x)e^{-rt}\) for some \(r > 0\), and an increasing \(u: \mathbb{R}^{++} \to \mathbb{R}^{++}\).
A pair \((x, t)\) is a (positive) amount of money \(x\) at (non-negative) time \(t\). The set of such pairs is \(\Omega = \mathbb{R}^+ \times \mathbb{R}^+\).

Fishburn and Rubinstein consider preferences \(\succ\) over \(\Omega\).

Axiom

1. If \(x > y\) then \((x, t) \succ (y, t)\).
2. If \(t < s\) then \((x, t) \succ (x, s)\).
3. If \((x, t) \succ (y, s)\) then \((x, t + \tau) \succ (y, s + \tau)\).
4. Upper and lower contour sets are closed.

All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)

The axioms imply that \(\succ\) is represented by \(f(x, t) = u(x)e^{-rt}\) for some \(r > 0\), and an increasing \(u: \mathbb{R}^+ \to \mathbb{R}^+\).
Application: Fishburn-Rubinstein Time Preferences

- A pair \((x, T)\) is a \((positive)\) amount of money \(x\) at a \textbf{random}\n (non-negative) time \(T\).

\section*{Axiom}

\begin{itemize}
 \item Keep FR’s axioms for deterministic times.
 \item If \(T <_1 S\) then \((x, T) \succ (x, S)\).
 \item If \((x, T) \succ (y, S)\) then \((x, T + R) \succ (y, S + R)\) for all bounded random independent \(R\).
 \item For all \((x, T)\) there is a \(t\) such that \((x, T) \sim (x, t)\).
\end{itemize}

- All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

\section*{Theorem}

The axioms imply that \(\succ\) is represented by \(f(x, T) = u(x)e^{-r\Phi(T)}\) for some \(r > 0\), an increasing \(u: \mathbb{R}_{++} \to \mathbb{R}_{++}\), and a monotone additive statistic \(\Phi\).
A pair \((x, T)\) is a (positive) amount of money \(x\) at a random (non-negative) time \(T\).

Axiom

1. Keep FR’s axioms for deterministic times.
2. If \(T < S\) then \((x, T) \succ (x, S)\).
3. If \((x, T) \succ (y, S)\) then \((x, T + R) \succ (y, S + R)\) for all bounded random independent \(R\).
4. For all \((x, T)\) there is a \(t\) such that \((x, T) \sim (x, t)\).

All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Theorem
The axioms imply that \(\succ\) is represented by \(f(x, T) = u(x)e^{-r\Phi(T)}\) for some \(r > 0\), an increasing \(u: \mathbb{R}_{++} \to \mathbb{R}_{++}\), and a monotone additive statistic \(\Phi\).
Application: Fishburn-Rubinstein Time Preferences

- A pair \((x, T)\) is a (positive) amount of money \(x\) at a \textbf{random} (non-negative) time \(T\).

Axiom

1. \textit{Keep FR’s axioms for deterministic times.}
2. If \(T < S\) then \((x, T) \succ (x, S)\).
3. If \((x, T) \succ (y, S)\) then \((x, T + R) \succ (y, S + R)\) for all bounded \textbf{random independent} \(R\).
4. For all \((x, T)\) there is a \(t\) such that \((x, T) \sim (x, t)\).

- All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Theorem

The axioms imply that \(\succ\) is represented by \(f(x, T) = u(x)e^{-r\Phi(T)}\) for some \(r > 0\), an increasing \(u: \mathbb{R}^{++} \to \mathbb{R}^{++}\), and a monotone additive statistic \(\Phi\).
A pair \((x, T)\) is a (positive) amount of money \(x\) at a random (non-negative) time \(T\).

Axiom

1. *Keep FR’s axioms for deterministic times.*
2. *If \(T < S\) then \((x, T) \succ (x, S)\).*
3. *If \((x, T) \succ (y, S)\) then \((x, T + R) \succ (y, S + R)\) for all bounded random independent \(R\).*
4. *for all \((x, T)\) there is a \(t\) such that \((x, T) \sim (x, t)\).*

- All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Theorem

The axioms imply that \(\succ\) is represented by \(f(x, T) = u(x)e^{-r\Phi(T)}\) for some \(r > 0\), an increasing \(u: \mathbb{R}_{++} \to \mathbb{R}_{++}\), and a monotone additive statistic \(\Phi\).
Application: Fishburn-Rubinstein Time Preferences

- A pair \((x, T)\) is a (positive) amount of money \(x\) at a **random** (non-negative) time \(T\).

Axiom

1. *Keep FR’s axioms for deterministic times.*
2. If \(T < 1 S\) then \((x, T) \succ (x, S)\).
3. If \((x, T) \succ (y, S)\) then \((x, T + R) \succ (y, S + R)\) for all bounded **random independent** \(R\).
4. **for all** \((x, T)\) there is a \(t\) such that \((x, T) \sim (x, t)\).

- All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Theorem

The axioms imply that \(\succ\) is represented by \(f(x, T) = u(x)e^{-r\Phi(T)}\) for some \(r > 0\), an increasing \(u : \mathbb{R}_{++} \to \mathbb{R}_{++}\), and a monotone additive statistic \(\Phi\).
A pair \((x, T)\) is a (positive) amount of money \(x\) at a random (non-negative) time \(T\).

Axiom

1. *Keep FR’s axioms for deterministic times.*
2. *If \(T < S\) then \((x, T) \succ (x, S)\).*
3. *If \((x, T) \succ (y, S)\) then \((x, T + R) \succ (y, S + R)\) for all bounded random independent \(R\).*
4. *for all \((x, T)\) there is a \(t\) such that \((x, T) \sim (x, t)\).*

All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Theorem

The axioms imply that \(\succ\) is represented by \(f(x, T) = u(x)e^{-r\Phi(T)}\) for some \(r > 0\), an increasing \(u: \mathbb{R}_{++} \rightarrow \mathbb{R}_{++}\), and a monotone additive statistic \(\Phi\).
A pair \((x, T)\) is a (positive) amount of money \(x\) at a random (non-negative) time \(T\).

Axiom

1. Keep FR’s axioms for deterministic times.
2. If \(T < S\) then \((x, T) \succeq (x, S)\).
3. If \((x, T) \succ (y, S)\) then \((x, T + R) \succ (y, S + R)\) for all bounded random independent \(R\).
4. For all \((x, T)\) there is a \(t\) such that \((x, T) \sim (x, t)\).

All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Theorem

The axioms imply that \(\succ\) is represented by \(f(x, T) = u(x)e^{-r\Phi(T)}\) for some \(r > 0\), an increasing \(u: \mathbb{R}_{++} \rightarrow \mathbb{R}_{++}\), and a monotone additive statistic \(\Phi\).
Application: Fishburn-Rubinstein Time Preferences

- A pair \((x, T)\) is a (positive) amount of money \(x\) at a random (non-negative) time \(T\).

Axiom

1. Keep FR’s axioms for deterministic times.
2. If \(T < S\) then \((x, T) \succ (x, S)\).
3. If \((x, T) \succ (y, S)\) then \((x, T + R) \succ (y, S + R)\) for all bounded random independent \(R\).
4. For all \((x, T)\) there is a \(t\) such that \((x, T) \sim (x, t)\).

- All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Theorem

The axioms imply that \(\succ\) is represented by \(f(x, T) = u(x)e^{-r\Phi(T)}\) for some \(r > 0\), an increasing \(u: \mathbb{R}_{++} \to \mathbb{R}_{++}\), and a monotone additive statistic \(\Phi\).
Application: Fishburn-Rubinstein Time Preferences

- Example: \(f(x, T) = u(x)\mathbb{E}\left[e^{-rT}\right] \).
 - Expectation of the Fishburn-Rubinstein utility.
 - Agents are risk seeking over time.

- Example: \(f(x, T) = \frac{u(x)}{\mathbb{E}[e^{rT}]} \).
 - \(f(x, T) = u(x)e^{-r\Phi(T)} \) for \(\Phi(T) = \frac{1}{r} \log \mathbb{E}[e^{rT}] \).
 - Agents are risk averse over time: \(\Phi(T) > \mathbb{E}[T] \).
Application: Fishburn-Rubinstein Time Preferences

- Example: \(f(x, T) = u(x)\mathbb{E} \left[e^{-rT} \right] \).

 - Expectation of the Fishburn-Rubinstein utility.
 - Agents are risk seeking over time.

- Example: \(f(x, T) = \frac{u(x)}{\mathbb{E} \left[e^{rT} \right]} \).

 - \(f(x, T) = u(x)e^{-r\Phi(T)} \) for \(\Phi(T) = \frac{1}{r} \log \mathbb{E} \left[e^{rT} \right] \).
 - Agents are risk averse over time: \(\Phi(T) > \mathbb{E} \left[T \right] \).
Application: Fishburn-Rubinstein Time Preferences

- Example: \(f(x, T) = u(x)\mathbb{E}[e^{-rT}] \).
 - Expectation of the Fishburn-Rubinstein utility.
 - Agents are risk seeking over time.

- Example: \(f(x, T) = \frac{u(x)}{\mathbb{E}[e^{rT}]} \).
 - \(f(x, T) = u(x)e^{-r\Phi(T)} \) for \(\Phi(T) = \frac{1}{r} \log \mathbb{E}[e^{rT}] \).
 - Agents are risk averse over time: \(\Phi(T) > \mathbb{E}[T] \).
Application: Fishburn-Rubinstein Time Preferences

- Example: \(f(x, T) = u(x) \mathbb{E} \left[e^{-rT} \right] \).

 - Expectation of the Fishburn-Rubinstein utility.
 - Agents are risk seeking over time.

- Example: \(f(x, T) = \frac{u(x)}{\mathbb{E} [e^{rT}]} \).

 - \(f(x, T) = u(x)e^{-r\Phi(T)} \) for \(\Phi(T) = \frac{1}{r} \log \mathbb{E} [e^{rT}] \).
 - Agents are risk averse over time: \(\Phi(T) > \mathbb{E} [T] \).
Application: Fishburn-Rubinstein Time Preferences

- Example: \(f(x, T) = u(x)\mathbb{E}\left[e^{-rT}\right]. \)
 - Expectation of the Fishburn-Rubinstein utility.
 - Agents are risk seeking over time.

- Example: \(f(x, T) = \frac{u(x)}{\mathbb{E}[e^{rT}]} . \)
 - \(f(x, T) = u(x)e^{-r\Phi(T)} \) for \(\Phi(T) = \frac{1}{r} \log \mathbb{E}[e^{rT}] . \)
 - Agents are risk averse over time: \(\Phi(T) > \mathbb{E}[T] . \)
Application: Fishburn-Rubinstein Time Preferences

- Example: $f(x, T) = u(x)E[e^{-rT}]$.
 - Expectation of the Fishburn-Rubinstein utility.
 - Agents are **risk seeking over time**.

- Example: $f(x, T) = \frac{u(x)}{E[e^{rT}]}$.
 - $f(x, T) = u(x)e^{-r\Phi(T)}$ for $\Phi(T) = \frac{1}{r} \log E[e^{rT}]$.
 - Agents are **risk averse over time**: $\Phi(T) > E[T]$.
Application: Rabin-Weizsäcker Preferences

- Let L^∞ be the set of bounded gambles.
- Consider an expected utility agent with an increasing utility function u for money.
- Write $X \succ Y$ if $\mathbb{E}[u(X)] > \mathbb{E}[u(Y)]$.

Axiom

Suppose X_1, X_2 are independent, Y_1, Y_2 are independent. If $X_1 \succ Y_1$ and $X_2 \succ Y_2$ then $Y_1 + Y_2$ does not stochastically dominate $X_1 + X_2$.

- What does this tell us about u?

Theorem (Rabin-Weizsäcker)

The axiom implies that either $u(x) = ae^{ax}$ for some $a \neq 0$, or $u(x) = x$ (up to affine transformations).

- So **CARA** agents are the only ones that satisfy the axiom.
Application: Rabin-Weizsäcker Preferences

- Let L^∞ be the set of bounded gambles.
- Consider an expected utility agent with an increasing utility function u for money.
- Write $X \succ Y$ if $E[u(X)] > E[u(Y)]$.

Axiom

Suppose X_1, X_2 are independent, Y_1, Y_2 are independent. If $X_1 \succ Y_1$ and $X_2 \succ Y_2$ then $Y_1 + Y_2$ does not stochastically dominate $X_1 + X_2$.

- What does this tell us about u?

Theorem (Rabin-Weizsäcker)

The axiom implies that either $u(x) = ae^{ax}$ for some $a \neq 0$, or $u(x) = x$ (up to affine transformations).

- So CARA agents are the only ones that satisfy the axiom.
Application: Rabin-Weizsäcker Preferences

- Let L^∞ be the set of **bounded gambles**.
- Consider an expected utility agent with an increasing utility function u for money.
- Write $X \succ Y$ if $\mathbb{E}[u(X)] > \mathbb{E}[u(Y)]$.

Axiom

Suppose X_1, X_2 are independent, Y_1, Y_2 are independent. If $X_1 \succ Y_1$ and $X_2 \succ Y_2$ then $Y_1 + Y_2$ does not stochastically dominate $X_1 + X_2$.

- What does this tell us about u?

Theorem (Rabin-Weizsäcker)

The axiom implies that either $u(x) = ae^{ax}$ for some $a \neq 0$, or $u(x) = x$ (up to affine transformations).

- So **CARA** agents are the only ones that satisfy the axiom.
Application: Rabin-Weizsäcker Preferences

- Let L^∞ be the set of bounded gambles.
- Consider an expected utility agent with an increasing utility function u for money.
- Write $X \succ Y$ if $\mathbb{E}[u(X)] > \mathbb{E}[u(Y)]$.

Axiom

Suppose X_1, X_2 are independent, Y_1, Y_2 are independent. If $X_1 \succ Y_1$ and $X_2 \succ Y_2$ then $Y_1 + Y_2$ does not stochastically dominate $X_1 + X_2$.

- What does this tell us about u?

Theorem (Rabin-Weizsäcker)

The axiom implies that either $u(x) = ae^{ax}$ for some $a \neq 0$, or $u(x) = x$ (up to affine transformations).

- So CARA agents are the only ones that satisfy the axiom.
Application: Rabin-Weizsäcker Preferences

- Let L^∞ be the set of bounded gambles.
- Consider an expected utility agent with an increasing utility function u for money.
- Write $X \succ Y$ if $\mathbb{E}[u(X)] > \mathbb{E}[u(Y)]$.

Axiom

Suppose X_1, X_2 are independent, Y_1, Y_2 are independent. If $X_1 \succ Y_1$ and $X_2 \succ Y_2$ then $Y_1 + Y_2$ does not stochastically dominate $X_1 + X_2$.

- What does this tell us about u?

Theorem (Rabin-Weizsäcker)

The axiom implies that either $u(x) = ae^{ax}$ for some $a \neq 0$, or $u(x) = x$ (up to affine transformations).

- So CARA agents are the only ones that satisfy the axiom.
Application: Rabin-Weizsäcker Preferences

- Let L^∞ be the set of bounded gambles.
- Consider an expected utility agent with an increasing utility function u for money.
- Write $X \succ Y$ if $\mathbb{E}[u(X)] > \mathbb{E}[u(Y)]$.

Axiom

Suppose X_1, X_2 are independent, Y_1, Y_2 are independent. If $X_1 \succ Y_1$ and $X_2 \succ Y_2$ then $Y_1 + Y_2$ does not stochastically dominate $X_1 + X_2$.

- What does this tell us about u?

Theorem (Rabin-Weizsäcker)

The axiom implies that either $u(x) = ae^{ax}$ for some $a \neq 0$, or $u(x) = x$ (up to affine transformations).

- So CARA agents are the only ones that satisfy the axiom.
Application: Rabin-Weizsäcker Preferences

- Let L^∞ be the set of bounded gambles.
- Consider an expected utility agent with an increasing utility function u for money.
- Write $X \succ Y$ if $\mathbb{E}[u(X)] > \mathbb{E}[u(Y)]$.

Axiom

*Suppose X_1, X_2 are independent, Y_1, Y_2 are independent. If $X_1 \succ Y_1$ and $X_2 \succ Y_2$ then $Y_1 + Y_2$ does not stochastically dominate $X_1 + X_2$.***

- What does this tell us about u?

Theorem (Rabin-Weizsäcker)

The axiom implies that either $u(x) = ae^{ax}$ for some $a \neq 0$, or $u(x) = x$ (up to affine transformations).

- So **CARA** agents are the only ones that satisfy the axiom.
Application: Rabin-Weizsäcker Preferences

- What about general (non-expected utility) preferences?
 - Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

Suppose X_1, X_2 are independent, Y_1, Y_2 are independent. If $X_1 \succ Y_1$ and $X_2 \succ Y_2$ then $Y_1 + Y_2$ does not stochastically dominate $X_1 + X_2$.

Proposition

The axioms imply that \succ is represented by some monotone additive statistic.

Such preferences can be represented by a monotone additive statistic.

Φ is the average of CARA certainty equivalents $S_a(X) = \frac{1}{a} \log \mathbb{E} \left[e^{aX} \right]$.
What about general (non-expected utility) preferences?

Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

Rabin-Weizsäcker. Suppose X_1, X_2 are independent, Y_1, Y_2 are independent. If $X_1 \succ Y_1$ and $X_2 \succ Y_2$ then $Y_1 + Y_2$ does not stochastically dominate $X_1 + X_2$.

$X + \epsilon \succ X$.

For all X there is a $c \in \mathbb{R}$ such that $X \sim c$.

Such preferences can be represented by a monotone additive statistic.

Proposition

The axioms imply that \succ is represented by some monotone additive statistic.

Φ is the average of CARA certainty equivalents $S_a(X) = \frac{1}{a} \log \mathbb{E} [e^{aX}]$.

Application: Rabin-Weizsäcker Preferences

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

1. **Rabin-Weizsäcker.** Suppose X_1, X_2 are independent, Y_1, Y_2 are independent. If $X_1 \succ Y_1$ and $X_2 \succ Y_2$ then $Y_1 + Y_2$ does not stochastically dominate $X_1 + X_2$.

2. $X + \varepsilon \succ X$.

3. For all X there is a $c \in \mathbb{R}$ such that $X \sim c$.

Such preferences can be represented by a monotone additive statistic.

Proposition

The axioms imply that \succ is represented by some monotone additive statistic.

Φ is the average of CARA certainty equivalents $S_a(X) = \frac{1}{a} \log \mathbb{E} [e^{aX}]$.
Application: Rabin-Weizsäcker Preferences

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

1. **Rabin-Weizsäcker.** Suppose X_1, X_2 are independent, Y_1, Y_2 are independent. If $X_1 \succ Y_1$ and $X_2 \succ Y_2$ then $Y_1 + Y_2$ does not stochastically dominate $X_1 + X_2$.

2. $X + \varepsilon \succ X$.

3. for all X there is a $c \in \mathbb{R}$ such that $X \sim c$.

- Such preferences can be represented by a monotone additive statistic.

Proposition

The axioms imply that \succ is represented by some monotone additive statistic.

- Φ is the average of CARA certainty equivalents $S_a(X) = \frac{1}{a} \log \mathbb{E} [e^{aX}]$.
Application: Rabin-Weizsäcker Preferences

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

1. **Rabin-Weizsäcker.** Suppose X_1, X_2 are independent, Y_1, Y_2 are independent. If $X_1 \succ Y_1$ and $X_2 \succ Y_2$ then $Y_1 + Y_2$ does not stochastically dominate $X_1 + X_2$.

2. $X + \varepsilon \succ X$.

3. For all X there is a $c \in \mathbb{R}$ such that $X \sim c$.

- Such preferences can be represented by a monotone additive statistic.

Proposition

The axioms imply that \succ is represented by some monotone additive statistic.

- Φ is the average of CARA certainty equivalents $S_a(X) = \frac{1}{a} \log \mathbb{E} [e^{aX}]$.
Application: Rabin-Weizsäcker Preferences

- What about general (non-expected utility) preferences?
- Write \(X \succ Y \) if the agent strictly prefers \(X \) to \(Y \).

Axiom

1. **Rabin-Weizsäcker.** Suppose \(X_1, X_2 \) are independent, \(Y_1, Y_2 \) are independent. If \(X_1 \succ Y_1 \) and \(X_2 \succ Y_2 \) then \(Y_1 + Y_2 \) does not stochastically dominate \(X_1 + X_2 \).

2. \(X + \varepsilon \succ X \).

3. For all \(X \) there is a \(c \in \mathbb{R} \) such that \(X \sim c \).

Such preferences can be represented by a monotone additive statistic.

Proposition

The axioms imply that \(\succ \) is represented by some monotone additive statistic.

- \(\Phi \) is the average of CARA certainty equivalents \(S_a(X) = \frac{1}{a} \log \mathbb{E} [e^{aX}] \).
Application: Rabin-Weizsäcker Preferences

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

1. **Rabin-Weizsäcker.** Suppose X_1, X_2 are independent, Y_1, Y_2 are independent. If $X_1 \succ Y_1$ and $X_2 \succ Y_2$ then $Y_1 + Y_2$ does not stochastically dominate $X_1 + X_2$.

2. $X + \varepsilon \succ X$.

3. For all X there is a $c \in \mathbb{R}$ such that $X \sim c$.

- Such preferences can be represented by a monotone additive statistic.

Proposition

The axioms imply that \succ is represented by some monotone additive statistic.

- Φ is the average of CARA certainty equivalents $S_a(X) = \frac{1}{a} \log \mathbb{E} [e^{aX}]$.
Application: Rabin-Weizsäcker Preferences

- What about general (non-expected utility) preferences?
- Write \(X \succ Y \) if the agent strictly prefers \(X \) to \(Y \).

Axiom

1. **Rabin-Weizsäcker.** Suppose \(X_1, X_2 \) are independent, \(Y_1, Y_2 \) are independent. If \(X_1 \succ Y_1 \) and \(X_2 \succ Y_2 \) then \(Y_1 + Y_2 \) does not stochastically dominate \(X_1 + X_2 \).

2. \(X + \varepsilon \succ X \).

3. For all \(X \) there is a \(c \in \mathbb{R} \) such that \(X \sim c \).

Such preferences can be represented by a monotone additive statistic.

Proposition

The axioms imply that \(\succ \) is represented by some monotone additive statistic.

\[\Phi \text{ is the average of CARA certainty equivalents } S_a(X) = \frac{1}{a} \log \mathbb{E} [e^{aX}] . \]
Application: Rabin-Weizsäcker Preferences

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

1. **Rabin-Weizsäcker.** Suppose X_1, X_2 are independent, Y_1, Y_2 are independent. If $X_1 \succ Y_1$ and $X_2 \succ Y_2$ then $Y_1 + Y_2$ does not stochastically dominate $X_1 + X_2$.

2. $X + \varepsilon \succ X$.

3. for all X there is a $c \in \mathbb{R}$ such that $X \sim c$.

Such preferences can be represented by a monotone additive statistic.

Proposition

The axioms imply that \succ is represented by some monotone additive statistic.

- Φ is the average of CARA certainty equivalents $S_a(X) = \frac{1}{a} \log \mathbb{E} [e^{aX}]$.
Binary state of the world $\theta \in \{0, 1\}$.

A Blackwell Experiment is a pair $\mu = (\mu_0, \mu_1)$ of probability measures on some measurable space Ω.

We say that it is bounded if $\log \frac{d\mu_0}{d\mu_1}$ is bounded.

The collection of bounded experiments is \mathcal{B}.

The Blackwell order captures a strong sense of when one experiment is more informative than another.

The product experiment $\mu \otimes \nu$ is given by $(\mu_0 \times \nu_0, \mu_1 \times \nu_1)$.
Binary state of the world $\theta \in \{0, 1\}$.

A **Blackwell Experiment** is a pair $\mu = (\mu_0, \mu_1)$ of probability measures on some measurable space Ω.

We say that it is **bounded** if $\log \frac{d\mu_0}{d\mu_1}$ is bounded.

The collection of bounded experiments is \mathcal{B}.

The Blackwell order captures a strong sense of when one experiment is more informative than another.

The product experiment $\mu \otimes \nu$ is given by $(\mu_0 \times \nu_0, \mu_1 \times \nu_1)$.

Binary state of the world $\theta \in \{0, 1\}$.

A **Blackwell Experiment** is a pair $\mu = (\mu_0, \mu_1)$ of probability measures on some measurable space Ω.

We say that it is **bounded** if $\log \frac{d\mu_0}{d\mu_1}$ is bounded.

The collection of bounded experiments is \mathcal{B}.

The Blackwell order captures a strong sense of when one experiment is more informative than another.

The product experiment $\mu \otimes \nu$ is given by $(\mu_0 \times \nu_0, \mu_1 \times \nu_1)$.
Monotone Additive Costs of Blackwell Experiments

- Binary state of the world \(\theta \in \{0, 1\} \).
- A **Blackwell Experiment** is a pair \(\mu = (\mu_0, \mu_1) \) of probability measures on some measurable space \(\Omega \).
- We say that it is **bounded** if \(\log \frac{d\mu_0}{d\mu_1} \) is bounded.
- The collection of bounded experiments is \(\mathcal{B} \).
- The Blackwell order captures a strong sense of when one experiment is more informative than another.
- The product experiment \(\mu \otimes \nu \) is given by \((\mu_0 \times \nu_0, \mu_1 \times \nu_1) \).
Binary state of the world $\theta \in \{0, 1\}$.

A **Blackwell Experiment** is a pair $\mu = (\mu_0, \mu_1)$ of probability measures on some measurable space Ω.

We say that it is **bounded** if $\log \frac{d\mu_0}{d\mu_1}$ is bounded.

The collection of bounded experiments is \mathcal{B}.

The Blackwell order captures a strong sense of when one experiment is more informative than another.

The product experiment $\mu \otimes \nu$ is given by $(\mu_0 \times \nu_0, \mu_1 \times \nu_1)$.
Binary state of the world $\theta \in \{0, 1\}$.

A **Blackwell Experiment** is a pair $\mu = (\mu_0, \mu_1)$ of probability measures on some measurable space Ω.

We say that it is **bounded** if $\log \frac{d\mu_0}{d\mu_1}$ is bounded.

The collection of bounded experiments is \mathcal{B}.

The Blackwell order captures a strong sense of when one experiment is more informative than another.

The product experiment $\mu \otimes \nu$ is given by $(\mu_0 \times \nu_0, \mu_1 \times \nu_1)$.
Monotone Additive Costs of Blackwell Experiments

- Large recent literature on the **cost of information**. How do we assign costs to experiments?
 - A **monotone additive cost function** is a map $C : B \rightarrow \mathbb{R}_+$ such that
 - If μ Blackwell dominates ν then $C(\mu) \geq C(\nu)$.
 - $C(\mu \otimes \nu) = C(\mu) + C(\nu)$.

- Examples.
 - Kullback-Leibler divergence:
 $$\int_{\Omega} \log \frac{d\mu_0}{d\mu_1}(\omega) d\mu_0(\omega).$$
 - Rényi a-divergence:
 $$D_a(\mu) = \frac{1}{a - 1} \log \int \left(\frac{d\mu_0}{d\mu_1}(\omega)\right)^{a-1} d\mu_0(\omega).$$

Theorem (Mu, Pomatto, Strack, Tamuz (2020))

Every monotone additive cost is a weighted sum of the KL-divergences and the Rényi divergences.
Monotone Additive Costs of Blackwell Experiments

- Large recent literature on the **cost of information**. How do we assign costs to experiments?

- **A monotone additive cost function** is a map $C : \mathcal{B} \rightarrow \mathbb{R}_+$ such that
 - If μ Blackwell dominates ν then $C'(\mu) \geq C'(\nu)$.
 - $C(\mu \otimes \nu) = C(\mu) + C(\nu)$.

- Examples.
 - Kullback-Leibler divergence:
 \[
 \int_{\Omega} \log \frac{d\mu_0}{d\mu_1}(\omega) \, d\mu_0(\omega).
 \]
 - Rényi a-divergence:
 \[
 D_a(\mu) = \frac{1}{a-1} \log \int \left(\frac{d\mu_0}{d\mu_1}(\omega)\right)^{a-1} \, d\mu_0(\omega).
 \]

Theorem (Mu, Pomatto, Strack, Tamuz (2020))

Every monotone additive cost is a weighted sum of the KL-divergences and the Rényi divergences.
Monotone Additive Costs of Blackwell Experiments

- Large recent literature on the **cost of information**. How do we assign costs to experiments?

- A **monotone additive cost function** is a map $C : \mathcal{B} \to \mathbb{R}_+$ such that
 - If μ Blackwell dominates ν then $C(\mu) \geq C(\nu)$.
 - $C(\mu \otimes \nu) = C(\mu) + C(\nu)$.

- **Examples.**
 - Kullback-Leibler divergence: $$\int_\Omega \log \frac{d\mu_0}{d\mu_1}(\omega) d\mu_0(\omega).$$
 - Rényi a-divergence: $$D_a(\mu) = \frac{1}{a-1} \log \int \left(\frac{d\mu_0}{d\mu_1}(\omega) \right)^{a-1} d\mu_0(\omega).$$

Theorem (Mu, Pomatto, Strack, Tamuz (2020))

Every monotone additive cost is a weighted sum of the KL-divergences and the Rényi divergences.
Monotone Additive Costs of Blackwell Experiments

- Large recent literature on the cost of information. How do we assign costs to experiments?
- A monotone additive cost function is a map $C : \mathcal{B} \to \mathbb{R}_+$ such that
 - If μ Blackwell dominates ν then $C(\mu) \geq C(\nu)$.
 - $C(\mu \otimes \nu) = C(\mu) + C(\nu)$.

- Examples.
 - Kullback-Leibler divergence:
 $$\int_\Omega \log \frac{d\mu_0}{d\mu_1}(\omega) \, d\mu_0(\omega).$$
 - Rényi a-divergence:
 $$D_a(\mu) = \frac{1}{a - 1} \log \int \left(\frac{d\mu_0}{d\mu_1}(\omega)\right)^{a-1} \, d\mu_0(\omega).$$

Theorem (Mu, Pomatto, Strack, Tamuz (2020))
Every monotone additive cost is a weighted sum of the KL-divergences and the Rényi divergences.
Monotone Additive Costs of Blackwell Experiments

- Large recent literature on the **cost of information**. How do we assign costs to experiments?

- **A monotone additive cost function** is a map $C : B \to \mathbb{R}_+$ such that
 - If μ Blackwell dominates ν then $C(\mu) \geq C(\nu)$.
 - $C(\mu \otimes \nu) = C(\mu) + C(\nu)$.

- **Examples.**
 - Kullback-Leibler divergence:
 $$\int_{\Omega} \log \frac{d\mu_0}{d\mu_1}(\omega) \, d\mu_0(\omega).$$
 - Rényi a-divergence:
 $$D_a(\mu) = \frac{1}{a-1} \log \int \left(\frac{d\mu_0}{d\mu_1}(\omega) \right)^{a-1} \, d\mu_0(\omega).$$

Theorem (Mu, Pomatto, Strack, Tamuz (2020))

Every monotone additive cost is a weighted sum of the KL-divergences and the Rényi divergences.
Monotone Additive Costs of Blackwell Experiments

• Large recent literature on the cost of information. How do we assign costs to experiments?

• A monotone additive cost function is a map $C : \mathcal{B} \to \mathbb{R}_+$ such that
 ▶ If μ Blackwell dominates ν then $C(\mu) \geq C(\nu)$.
 ▶ $C(\mu \otimes \nu) = C(\mu) + C(\nu)$.

• Examples.
 ▶ Kullback-Leibler divergence:
 $$\int_{\Omega} \log \frac{d\mu_0}{d\mu_1}(\omega) \, d\mu_0(\omega).$$

 ▶ Rényi a-divergence:
 $$D_a(\mu) = \frac{1}{a - 1} \log \int \left(\frac{d\mu_0}{d\mu_1}(\omega)\right)^{a-1} \, d\mu_0(\omega).$$

Theorem (Mu, Pomatto, Strack, Tamuz (2020))

Every monotone additive cost is a weighted sum of the KL-divergences and the Rényi divergences.
Monotone Additive Costs of Blackwell Experiments

- Large recent literature on the **cost of information**. How do we assign costs to experiments?

- A **monotone additive cost function** is a map $C: \mathcal{B} \rightarrow \mathbb{R}_+$ such that
 - If μ Blackwell dominates ν then $C(\mu) \geq C(\nu)$.
 - $C(\mu \otimes \nu) = C(\mu) + C(\nu)$.

- Examples.
 - Kullback-Leibler divergence:
 \[
 \int_{\Omega} \log \left(\frac{d\mu_0}{d\mu_1}(\omega) \right) d\mu_0(\omega).
 \]
 - Rényi a-divergence:
 \[
 D_a(\mu) = \frac{1}{a - 1} \log \int \left(\frac{d\mu_0}{d\mu_1}(\omega) \right)^{a-1} d\mu_0(\omega).
 \]

Theorem (Mu, Pomatto, Strack, Tamuz (2020))

Every monotone additive cost is a weighted sum of the KL-divergences and the Rényi divergences.
Monotone Additive Costs of Blackwell Experiments

- Large recent literature on the cost of information. How do we assign costs to experiments?

- A monotone additive cost function is a map $C: \mathcal{B} \to \mathbb{R}_+$ such that
 - If μ Blackwell dominates ν then $C(\mu) \geq C(\nu)$.
 - $C(\mu \otimes \nu) = C(\mu) + C(\nu)$.

- Examples.
 - Kullback-Leibler divergence:
 \[
 \int_{\Omega} \log \frac{d\mu_0}{d\mu_1}(\omega) \, d\mu_0(\omega).
 \]
 - Rényi a-divergence:
 \[
 D_a(\mu) = \frac{1}{a-1} \log \int \left(\frac{d\mu_0}{d\mu_1}(\omega) \right)^{a-1} \, d\mu_0(\omega).
 \]

Theorem (Mu, Pomatto, Strack, Tamuz (2020))

Every monotone additive cost is a weighted sum of the KL-divergences and the Rényi divergences.